AZ® 1500 Photoresist
AZ® 1500 series positive photoresists are well established g-line and broad-band resists. Wide exposure latitude and good resolution and depth of focus improve yield and throughput. Various viscosity grades are available for a multitude of applications and dyed versions are engineered to control reflective notching. Resists of AZ’s 1500 series can be developed in a variety of metal ion free developers (with and without surfactants) using a spray/puddle process.

For high throughput batch processing in a tank, inorganic developers are an excellent alternative.
AZ® 1500 Photoresist Products

AZ® 1500 Photoresist
 AZ® 1505
 AZ® 1512
 AZ® 1518
 AZ® 1529

AZ® 1500-SFD Photoresist
 AZ® 1512-SFD
 AZ® 1518-SFD
AZ® 1500 Photoresist

g-line Resolution at Specific Film Thickness

<table>
<thead>
<tr>
<th>Film Thickness (µm)</th>
<th>Resolution (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ® 1505</td>
<td>0.5</td>
</tr>
<tr>
<td>AZ® 1512</td>
<td>0.6</td>
</tr>
<tr>
<td>AZ® 1518/1518-SFD</td>
<td>0.7</td>
</tr>
<tr>
<td>AZ® 1512-SFD</td>
<td>0.8</td>
</tr>
<tr>
<td>AZ® 1518/1518-SFD</td>
<td>0.9</td>
</tr>
<tr>
<td>AZ® 1512-SFD</td>
<td>1.0</td>
</tr>
<tr>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>~</td>
<td>1.5</td>
</tr>
<tr>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>AZ® 1529</td>
<td>2.0</td>
</tr>
</tbody>
</table>

AZ, the AZ logo, BARLi, Aquatar, nLOF, and Kwik Strip are registered trademarks and MiR, HiR, HERB, Spinfill, Signiflow, SWG, DX, and AX are trademarks of AZ Electronic Materials USA Corp.
AZ® 1500 Photoresist

<table>
<thead>
<tr>
<th>AZ® 1505</th>
<th>Lift off process for patterning MR stripe</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ® 1512</td>
<td>Good process latitude in g-line, and broad band
Excellent for wet etch processes</td>
</tr>
<tr>
<td>AZ® 1518</td>
<td>Good process latitude in g-line, and broad band
Excellent for wet etch processes
Thicker film for increased etch resistance</td>
</tr>
<tr>
<td>AZ® 1529</td>
<td>Great for pad layer applications
Can be coated from 2.5 to 5µm
Ideal for plating processes</td>
</tr>
<tr>
<td>AZ® 1500-SFD Photoresist</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>AZ® 1512-SFD</td>
<td></td>
</tr>
<tr>
<td>Dyed version</td>
<td></td>
</tr>
<tr>
<td>Suppresses swing and reflective notching effects on substrates with high or varying reflectivity, e.g. metals and contacts</td>
<td></td>
</tr>
<tr>
<td>AZ® 1518-SFD</td>
<td></td>
</tr>
<tr>
<td>Dyed version</td>
<td></td>
</tr>
<tr>
<td>Higher film thickness, can be coated from 1.5 – 3µm</td>
<td></td>
</tr>
<tr>
<td>Suppresses swing and reflective notching effects on substrates with high or varying reflectivity, e.g. metals and contacts</td>
<td></td>
</tr>
</tbody>
</table>
AZ® 1500 Resist

Recommended Process Conditions

<table>
<thead>
<tr>
<th>Process</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Bake:</td>
<td>90-100°C for 30-60sec (hotplate)</td>
</tr>
<tr>
<td>Exposure:</td>
<td>g-line or broadband</td>
</tr>
<tr>
<td>Post Exposure bake:</td>
<td>optional</td>
</tr>
<tr>
<td>Developer:</td>
<td>AZ® 300MIF Developer</td>
</tr>
<tr>
<td></td>
<td>AZ® 917 MIF Developer</td>
</tr>
<tr>
<td></td>
<td>AZ® 1:1 Developer</td>
</tr>
<tr>
<td>Develop Cycle:</td>
<td>30-50sec spray@ 100-200rpm or 60-120sec immersion @ 23±1°C</td>
</tr>
</tbody>
</table>
Spin Speed Curve for AZ® 1500 Resist Products

6” silicon wafers
Static dispense
SB: 100°C/60sec
Summary

g-Line Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1µm L/S</th>
<th>0.9µm L/S</th>
<th>1µm Trench</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of Focus</td>
<td>1.8µm</td>
<td>1.8µm</td>
<td>2.4µm</td>
</tr>
<tr>
<td>Exposure Latitude</td>
<td>20%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>Dose to Print (DTP)</td>
<td>319mJ/cm²</td>
<td>339mJ/cm²</td>
<td>339mJ/cm²</td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>0.9µm</td>
<td>0.8µm</td>
</tr>
</tbody>
</table>
AZ® 1500 Photoresist

Optical Parameters

Refractive Index

<table>
<thead>
<tr>
<th></th>
<th>Bleached</th>
<th></th>
<th>405nm</th>
<th></th>
<th>435nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1.6994</td>
<td>1.6714</td>
<td>1.6571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0.0058</td>
<td>0.0010</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unbleached</th>
<th></th>
<th>405nm</th>
<th></th>
<th>435nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1.7123</td>
<td>1.6906</td>
<td>1.6948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0.0358</td>
<td>0.0336</td>
<td>0.0227</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AZ® 1500 Photoresist
Optical Parameters

◊ Dill Parameters

<i-line>:
A = 1.0133 (µm⁻¹)
B = 0.2177 (µm⁻¹)
C = 0.0239 (cm²/mJ)

<g-line>:
A = NA
B = NA
C = NA

◊ Cauchy Coefficients

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleached</td>
<td>1.5966</td>
<td>0.003758</td>
<td>2.45E⁻⁰³</td>
</tr>
<tr>
<td>Unbleached</td>
<td>1.5996</td>
<td>0.013498</td>
<td>1.90E⁻⁰⁴</td>
</tr>
</tbody>
</table>
AZ® 1500-SFD Photoresist
Optical Parameters

◊ Refractive Index

<table>
<thead>
<tr>
<th></th>
<th>365nm</th>
<th>405nm</th>
<th>435nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleached</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1.6947</td>
<td>1.6665</td>
<td>1.6503</td>
</tr>
<tr>
<td>k</td>
<td>0.0058</td>
<td>0.0021</td>
<td>0.0047</td>
</tr>
<tr>
<td>Unbleached</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1.7057</td>
<td>1.6822</td>
<td>1.6846</td>
</tr>
<tr>
<td>k</td>
<td>0.0337</td>
<td>0.0327</td>
<td>0.0257</td>
</tr>
</tbody>
</table>
AZ® 1500-SFD Photoresist
Optical Parameters

◊ Dill Parameters

i-line:
- \(A = 0.9765 \, (\mu m^{-1}) \)
- \(B = 0.2037 \, (\mu m^{-1}) \)
- \(C = 0.0254 \, (cm^2/mJ) \)

g-line:
- \(A = 0.48 \, (\mu m^{-1}) \)
- \(B = 0.265 \, (\mu m^{-1}) \)
- \(C = 0.0223 \, (cm^2/mJ) \)

◊ Cauchy Coefficients

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleached</td>
<td>1.5933</td>
<td>0.007923</td>
<td>1.39E-03</td>
</tr>
<tr>
<td>Unbleached</td>
<td>1.6028</td>
<td>0.002763</td>
<td>5.21E-03</td>
</tr>
</tbody>
</table>
AZ® 1500-SFD Photoresist
Optical Parameters - Absorptivity
AZ® 1512 Photoresist
Resolution for Dense Lines, FT = 1.21 µm

Focus –0.4µm
SB: 95°/ 50sec; PEB 105°C/50 sec
GCA 0.42NA g-line stepper, 70 mJ/cm²
AZ® 327 MIF developer, 40 sec spray/puddle @ 21°C
AZ® 1512 Photoresist
DOF for 1.3 µm Dense Lines, FT = 1.21 µm

SB: 95°/ 50sec; PEB 105°C/50 sec
GCA 0.42NA g-line stepper, 70 mJ/cm²
AZ® 327 MIF developer, 40 sec spray/puddle @ 21°C
AZ® 1518-SFD Photoresist
Exposure Latitude for Dense Lines, FT = 2.22 µm

SB: 100°/ 60sec; PEB 110°C/60 sec
GCA 0.42NA g-line stepper
AZ® 425 MIF developer
AZ® 1518-SFD Photoresist
Linearity/Resolution - Dense Lines, FT = 2.32µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 319 mJ/cm²
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer / Single puddle for 60 sec @ 21.0°C

AZ Electronic Materials
AZ® 1518-SFD Photoresist
Exposure Latitude – 1.0 µm Dense Lines, FT = 2.32µm

260 mJ/cm²
270 mJ/cm²
280 mJ/cm²
290 mJ/cm²

319 mJ/cm²
310 mJ/cm²
300 mJ/cm²

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer / Single puddle for 60 sec @ 21.0°C
AZ® 1518-SFD Photoresist
Exposure Latitude - 0.9 µm Dense Lines, FT = 2.32µm

280 mJ/cm² 290 mJ/cm² 300 mJ/cm²

310 mJ/cm²

339 mJ/cm² 329 mJ/cm² 319 mJ/cm²

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer/ Single puddle for 60 sec @ 21.0°C

AZ Electronic Materials
AZ® 1518-SFD Photoresist
DOF for 1.0 µm Dense Lines, FT = 2.32µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 319 mJ/cm²
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer/Single puddle for 60 sec @ 21.0°C
AZ® 1518-SFD Photoresist
DOF for 0.9 µm Dense Lines, FT = 2.32µm

1.20 µm 0.90 µm 0.60 µm

-0.60 µm -0.30 µm 0.00 µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 339 mJ/cm²
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer / Single puddle for 60 sec @ 21.0°C

AZ Electronic Materials
AZ® 1518-SFD Photoresist

Exp. Latitude – 1.0 µm Trench – Pitch 1:2, FT = 2.32µm

SB: 95°C for 60sec contact
Exposure: GCA 0.42 NA g-line stepper
PEB: 115°C for 60sec contact

Develop: AZ® 917 MIF Developer/ Single puddle for 60 sec @ 21.0°C

AZ Electronic Materials
AZ® 1518-SFD Photoresist

DOF for 1.0 µm Trench – Pitch 1:2, FT = 2.32µm

1.50 µm 1.20 µm 0.90 µm 0.60 µm 0.30 µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 339 mJ/cm²
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer/ Single puddle for 60 sec @ 21.0°C

AZ Electronic Materials
AZ® 1518-SFD Photoresist

Linearity - 1.0 µm Trench – Pitch 1:2, FT = 2.32µm

1.50 µm 1.35 µm 1.20 µm 1.10 µm 1.00 µm

0.90 µm

0.65 µm 0.70 µm 0.75 µm 0.80 µm 0.85 µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 339 mJ/cm²
PEB : 115°C for 60sec contact
Develop: **AZ® 917 MIF Developer**/ Single puddle for 60 sec @ 21.0°C

AZ Electronic Materials
AZ® 1529 Photoresist
Thermal Stability - Large Pads

Film Thickness: 3.5µm
SB: 95°C for 25min convection oven
Exposure: Ultratech 1500 stepper
Develop: AZ® Developer (diluted to 0.21N)
Hardbake: 2min hot plate
AZ® 1518-SFD Photoresist

g-line Performance

in AZ® 425 MIF and AZ® 917 MIF Developer
AZ® 1518-SFD Photoresist

Exp. Latitude for 1.30 µm Dense Lines, FT = 1.825 µm

SB : 100°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper
PEB : 110°C for 60sec contact

Develop: AZ® 917 MIFDeveloper / Single puddle for 60 sec @ 21°C

AZ Electronic Materials
AZ® 1518-SFD Photoresist
Linearity - Dense Lines, FT = 2.32 µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 339 mJ/cm²
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer/ Single puddle for 60 sec @ 21.0°C

AZ Electronic Materials
AZ® 1518-SFD Photoresist
Exposure Latitude for 1.0 µm Dense Lines, FT = 2.32 µm

270 mJ/cm²

280 mJ/cm²

290 mJ/cm²

300 mJ/cm²

329 mJ/cm²

319 mJ/cm²

310 mJ/cm²

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer/ Single puddle for 60 sec @ 21.0°C
AZ® 1518-SFD Photoresist
DOF for 1.0 µm Dense Lines, FT = 2.32 µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 319 mJ/cm²
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer/ Single puddle for 60 sec @ 21.0°C
AZ® 1518-SFD Photoresist
Linearity for Dense Lines, FT = 2.32 µm

SB : 95°C for 60sec contact
Exposure : GCA 0.42 NA g-line stepper, 319 mJ/cm²
PEB : 115°C for 60sec contact
Develop: AZ® 917 MIF Developer/ Single puddle for 60 sec @ 21.0°C