Oxford Instruments Plasmalab 80 Plus PECVD

PECVD

The Oxford Plasma-Enhanced Chemical Vapor Deposition system is currently configured to deposit thin films of dielectric materials, such as silicon dioxide and silicon nitride. The instrument will soon be upgraded for carbon nanotube production as well. Current process gasses available are: ammonia, nitrous oxide, oxygen-tetrafluoromethane mix (20:80), nitrogen, and silane (2%).


CMADP Upcoming Events

Special seminar by Dr. James P. Landers
Commonwealth Professor in Chemistry,
Mechanical Engineering & Pathology
University of Virginia

Wednesday, May 17, 2017 at 3:00pm
Simons Auditorium, HBC, West Campus

"Integrated Microfluidic Systems for Forensic DNA Analysis"
In 2006, we demonstrated that microfluidic technology could provide a ‘lab-on-a-chip’ solution for real-world genetic analysis. Sample-in/answer-out functionality was shown for the detection of bacteria in mouse blood and in a human nasal swab, with a sub-30 minute analytical time for DNA extraction, amplification, electrophoretic separation and detection. We extrapolated these technology developments to the analysis of short tandem repeats (STR) in human DNA; these clinically-insignificant (presumably) tetranucleotide sequences function effectively for statistically-relevant matching in human identification. Our efforts led to the development of a commercializable system designed for implementation in crime labs for STR profiling convicted felons or, in some states, profiling arrestees in booking stations. An intricate but functional microfluidic architecture allowed sample-to-profile to be achieved from a cheek swab in less than 80 minutes, using nanoliter flow control, infrared thermocycling and rapid electrophoretic separation of DNA with 5-color fluorescence detection. We have since demonstrated the fabrication of hybrid microdevices composed of inexpensive polymeric materials, many of these commercial-off-the-shelf. We have designed, built and functionalized fully-integrated DNA analysis chemistry/microfluidics on a rotationally-driven system the size of a compact disc. With this system, DNA can be extracted from a swab, PCR amplified to generate an abundance of DNA fragments of the STR loci, followed by resolution of those fragments in a separation in a 4 cm Leff channel that is complete in <300 sec with a 2-base resolution. The processes that allow for swab in–profile out microfluidics are carried out on an instrument that can be carried in one hand and weighs ~14 lbs, ultimately allowing for facile rapid human identification/screening in the field.
KU Today